Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(2): e2309664121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38170746

RESUMO

Inorganic polyphosphate (polyP) is primarily synthesized by Polyphosphate Kinase-1 (PPK-1) and regulates numerous cellular processes, including energy metabolism, stress adaptation, drug tolerance, and microbial pathogenesis. Here, we report that polyP interacts with acyl CoA carboxylases, enzymes involved in lipid biosynthesis in Mycobacterium tuberculosis. We show that deletion of ppk-1 in M. tuberculosis results in transcriptional and metabolic reprogramming. In comparison to the parental strain, the Δppk-1 mutant strain had reduced levels of virulence-associated lipids such as PDIMs and TDM. We also observed that polyP deficiency in M. tuberculosis is associated with enhanced phagosome-lysosome fusion in infected macrophages and attenuated growth in mice. Host RNA-seq analysis revealed decreased levels of transcripts encoding for proteins involved in either type I interferon signaling or formation of foamy macrophages in the lungs of Δppk-1 mutant-infected mice relative to parental strain-infected animals. Using target-based screening and molecular docking, we have identified raloxifene hydrochloride as a broad-spectrum PPK-1 inhibitor. We show that raloxifene hydrochloride significantly enhanced the activity of isoniazid, bedaquiline, and pretomanid against M. tuberculosis in macrophages. Additionally, raloxifene inhibited the growth of M. tuberculosis in mice. This is an in-depth study that provides mechanistic insights into the regulation of mycobacterial pathogenesis by polyP deficiency.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Simulação de Acoplamento Molecular , Cloridrato de Raloxifeno/metabolismo , Polifosfatos/metabolismo , Tuberculose/microbiologia , Redes e Vias Metabólicas , Proteínas de Bactérias/metabolismo
2.
Cancers (Basel) ; 15(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894287

RESUMO

Brain cancer is known as one of the deadliest cancers globally. One of the causative factors is the imbalance between oxidative and antioxidant activities in the body, which is referred to as oxidative stress (OS). As part of regular metabolism, oxygen is reduced by electrons, resulting in the creation of numerous reactive oxygen species (ROS). Inflammation is intricately associated with the generation of OS, leading to the increased production and accumulation of reactive oxygen and nitrogen species (RONS). Glioma stands out as one of the most common malignant tumors affecting the central nervous system (CNS), characterized by changes in the redox balance. Brain cancer cells exhibit inherent resistance to most conventional treatments, primarily due to the distinctive tumor microenvironment. Oxidative stress (OS) plays a crucial role in the development of various brain-related malignancies, such as glioblastoma multiforme (GBM) and medulloblastoma, where OS significantly disrupts the normal homeostasis of the brain. In this review, we provide in-depth descriptions of prospective targets and therapeutics, along with an assessment of OS and its impact on brain cancer metabolism. We also discuss targeted therapies.

3.
Comput Biol Chem ; 107: 107965, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37826990

RESUMO

The PD-1/PD-L1 interaction is a promising target for small molecule inhibitors in cancer immunotherapy, but targeting this interface has been challenging. While efforts have been made to identify compounds that target the orthosteric sites, no reports have explored the potential of small molecules to target the allosteric region of PD-1. Therefore, our study aims to establish a pipeline to identify small molecules that can effectively bind to either the orthosteric or allosteric pockets of PD-1. We categorized the PD-1 interface into two hot-spot zones (P-and N-zones) based on extensive analysis of its structural, dynamical, and energetic properties. These zones correspond to the orthosteric and allosteric PPI sites, respectively, targeted by monoclonal antibodies. We used a guided virtual screening workflow to identify hits from ∼7 million compounds library, which were then clustered based on structural similarity and assessed by interaction fingerprinting. The selective and diverse chemical representatives were subjected to MD simulations and binding energetics calculations to filter out false positives and identify actual binders. Binding poses metadynamics calculations confirmed the stability of the final hits in the pocket. This study emphasizes the need for an integrated pipeline that uses molecular dynamics simulations and binding energetics to identify potential binders for the dynamic PD-1/PD-L1 interface, due to the lack of small molecule co-crystals. Only a few potential binders were discovered from a large pool of molecules targeting both the allosteric and orthosteric zones. Our results suggest that the allosteric site has more potential than the orthosteric site for inhibitor design. The identified "computational hits" hold potential as starting points for in vitro evaluations followed by hit-to-lead optimization. Overall, this study represents an effort to establish a computational pipeline for exploring and enriching both the allosteric and orthosteric sites of PPI interfaces, "a tough but indispensable nut to crack".


Assuntos
Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Sítio Alostérico , Simulação de Dinâmica Molecular , Ligantes , Sítios de Ligação , Regulação Alostérica
4.
J Biomol Struct Dyn ; : 1-17, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878121

RESUMO

In silico docking studies serve as a swift and efficient means to sift through a vast array of natural and synthetic small molecules, aiding in the identification of potential inhibitors for cancer biomarkers. One such biomarker, ceruloplasmin (CP), has been implicated in various tumor types due to its overexpression, earning it recognition as a marker of aggressive tumors. This study focused on pinpointing inhibitors for the CP -Myeloperoxidase (MPO) interaction site, a complex formation known to impede HOCl production, a crucial process for inducing apoptotic cell death in tumor cells. The initial phase of our investigation involved in silico docking studies, which screened a diverse library of phytochemicals and marine compounds. Through this process, we identified several promising drug candidates based on their binding affinities. Subsequently, these candidates underwent rigorous filtration based on Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties. Finally, we subjected the selected compounds to molecular dynamics (MDs) simulation to further assess their viability. Lycoperoside F, a steroidal alkaloid glycoside derived from tomatoes (Lycopersicon esculentum), stood out with notable interactions at the binding site. Another noteworthy compound was Xyloglucan (XG) oligosaccharides, predominantly found in the primary cell walls of higher plants. During the subsequent MDs simulations, these interactions were accompanied by highly stable root mean square deviation (RMSD) plots, signifying the consistency and robustness of the observed MDs behavior. XG oligosaccharides demonstrated the highest binding affinity with CP, reaffirming their potential as strong candidates. Additionally, Ardimerin digallate, known as a retroviral ribonuclease H inhibitor for HIV-1 and HIV-2, displayed favorable interactions at the MPO interaction site. Given that promising drug candidates must meet stringent criteria, including non-toxicity, effectiveness, specificity, stability and potency, these phytochemicals have the potential to progress to in vitro studies as CP inhibitors. Ultimately, this could contribute to the suppression of tumor growth, marking a significant step in cancer treatment research.Communicated by Ramaswamy H. Sarma.

5.
Front Oncol ; 13: 1157366, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274234

RESUMO

Emerging evidence suggests that chemotherapeutic agents and targeted anticancer drugs have serious side effects on the healthy cells/tissues of the patient. To overcome this, the use of non-oncology drugs as potential cancer therapies has been gaining momentum. Herein, we investigated one non-oncology drug named meticrane (a thiazide diuretic used to treat essential hypertension), which has been reported to indescribably improve the therapeutic efficacy of anti-CTLA4 in mice with AB1 HA tumors. In our hypothesis-driven study, we tested anti-cancer potential meticrane in hematological malignance (leukemia and multiple myeloma) and liver cancer cell lines. Our analysis showed that: 1) Meticrane induced alteration in the cell viability and proliferation in leukemia cells (Jurkat and K562 cells) and liver cancer (SK-hep-1), however, no evidence of apoptosis was detectable. 2) Meticrane showed additive/synergistic effects with epigenetic inhibitors (DNMT1/5AC, HDACs/CUDC-101 and HDAC6/ACY1215). 3) A genome-wide transcriptional analysis showed that meticrane treatment induces changes in the expression of genes associated with non-cancer associated pathways. Of importance, differentially expressed genes showed favorable correlation with the survival-related genes in the cancer genome. 4) We also performed molecular docking analysis and found considerable binding affinity scores of meticrane against PD-L1, TIM-3, CD73, and HDACs. Additionally, we tested its suitability for immunotherapy against cancers, but meticrane showed no response to the cytotoxicity of cytokine-induced killer (CIK) cells. To our knowledge, our study is the first attempt to identify and experimentally confirm the anti-cancer potential of meticrane, being also the first to test the suitability of any non-oncology drug in CIK cell therapy. Beyond that, we have expressed some concerns confronted during testing meticrane that also apply to other non-oncology drugs when considered for future clinical or preclinical purposes. Taken together, meticrane is involved in some anticancer pathways that are passively targeting cancer cells and may be considered as compatible with epigenetic inhibitors.

6.
J Biomol Struct Dyn ; 41(24): 15305-15319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36907648

RESUMO

Interface mimicry, achieved by recognition of host-pathogen interactions, is the basis by which pathogen proteins can hijack the host machinery. The envelope (E) protein of SARS-CoV-2 is reported to mimic the histones at the BRD4 surface via establishing the structural mimicry; however, the underlying mechanism of E protein mimicking the histones is still elusive. To explore the mimics at dynamic and structural residual network level an extensive docking, and MD simulations were carried out in a comparative manner between complexes of H3-, H4-, E-, and apo-BRD4. We identified that E peptide is able to attain an 'interaction network mimicry', as its acetylated lysine (Kac) achieves orientation and residual fingerprint similar to histones, including water-mediated interactions for both the Kac positions. We identified Y59 of E, playing an anchor role to escort lysine positioning inside the binding site. Furthermore, the binding site analysis confirms that E peptide needs a higher volume, similar to the H4-BRD4 where both the lysine's (Kac5 and Kac8) can accommodate nicely, however, the position of Kac8 is mimicked by two additional water molecules other than four water-mediated bridging's, strengthening the possibility that E peptide could hijack host BRD4 surface. These molecular insights seem pivotal for mechanistic understanding and BRD4-specific therapeutic intervention. KEY POINTSMolecular mimicry is reported in hijacking and then outcompeting the host counterparts so that pathogens can rewire their cellular function by overcoming the host defense mechanism.The molecular recognition process is the basis of molecular mimicry. The E peptide of SARS-CoV-2 is reported to mimic host histone at the BRD4 surface by utilizing its C-terminally placed acetylated lysine (Kac63) to mimic the N-terminally placed acetylated lysine Kac5GGKac8 histone (H4) by interaction network mimicry identified through microsecond molecular dynamics (MD) simulations and post-processing extensive analysis.There are two steps to mimic: firstly, tyrosine residues help E to anchor at the BRD4 surface to position Kac and increase the volume of the pocket. Secondary, after positioning of Kac, a common durable interaction network N140:Kac5; Kac5:W1; W1:Y97; W1:W2; W2:W3; W3:W4; W4:P82 is established between Kac5, with key residues P82, Y97, N140, and four water molecules through water mediate bridge. Furthermore, the second acetylated lysine Kac8 position and its interaction as polar contact with Kac5 were also mimicked by E peptide through interaction network P82:W5; W5:Kac63; W5:W6; W6:Kac63.The binding event at BRD4/BD1 seems an induced-fit mechanism as a bigger binding site volume was identified at H4-BRD4 on which E peptide attains its better stability than H3-BRD4.We identified the tyrosine residue Y59 of E that acts like an anchor on the BRD4 surface to position Kac inside the pocket and attain the interaction network by using aromatic residues of the BRD4 surface.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Histonas , Humanos , Histonas/química , Proteínas Nucleares/química , SARS-CoV-2/metabolismo , Lisina , Fatores de Transcrição/química , Ligação Proteica , Peptídeos/metabolismo , Tirosina/metabolismo , Água/metabolismo , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/metabolismo
7.
J Biomol Struct Dyn ; 41(7): 2956-2970, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35196966

RESUMO

Three receptor tyrosine kinases (RTKs), c-MET, EGFR, and VEGFR-2 have been identified as potential oncogenic targets involved in tumor development, metastasis, and invasion. Designing inhibitors that can simultaneously interact with multiple targets is a promising approach, therefore, inhibiting these three RTKs with a single chemical component might give an effective chemotherapeutic strategy for addressing the disease while limiting adverse effects. The in-silico methods have been developed to identify the polypharmacological inhibitors particularly for drug repurposing and multitarget drug design. Here, to find a viable inhibitor from natural source against these three RTKs, structure-based pharmacophore mapping and virtual screening of SN-II database were carried out. The filtered compound SN00020821, identified as Cedeodarin, from different computational approaches, demonstrated good interactions with all the three targets, c-MET/EGFR/VEGFR-2, with interaction energies of -42.35 kcal/mol, -49.32 kcal/mol and -44.83 kcal/mol, respectively. SN00020821displayed stable key interactions with critical amino acids of all the three receptors' kinase catalytic domains including "DFG motif" explored through the MD simulations. Furthermore, it also met the ADMET requirements and was determined to be drug-like as predicted from the Lipinski's rule of five and Veber's rule. Finally, SN00020821 provides a novel molecular scaffold that could be investigated further as a polypharmacological anticancer therapeutic candidate that targets the three RTKs.Communicated by Ramaswamy H. Sarma.


Assuntos
Produtos Biológicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Farmacóforo , Receptores ErbB/metabolismo
8.
J Hypertens ; 40(11): 2147-2160, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36040233

RESUMO

OBJECTIVES: Matrix metalloproteinase 8 (MMP8) has a prominent role in collagen turnover in blood vessels and vascular remodeling. The contribution of regulatory single nucleotide polymorphisms in MMP8 to cardiovascular diseases is unclear. We aimed to delineate the influence of MMP8 promoter variations on hypertension. METHODS: A case-control study in unrelated individuals ( n  = 2565) was carried out. Resequencing of the MMP8 proximal promoter, linkage disequilibrium analysis, genotyping of variants and regression analyses were performed. MMP8 promoter-reporter constructs were generated and expressed in human vascular endothelial cells under various conditions. RESULTS: We identified four single nucleotide polymorphisms (SNPs) in the promoter region of MMP8 : -1089A/G (rs17099452), -815G/T (rs17099451), -795C/T (rs11225395), -763A/T (rs35308160); these SNPs form three major haplotypes. Hap3 (viz., GTTT haplotype) carriers showed significant associations with hypertension in two geographically distinct human populations (e.g., Chennai: odds ratio [OR] = 1.47, 95% confidence interval [CI] = 1.16-1.86, P  = 2 × 10 -3 ; Chandigarh: OR = 1.85, 95% CI = 1.21-2.81, P  = 4 × 10 -3 ). Hap3 carriers also displayed elevated systolic blood pressure, diastolic blood pressure and mean arterial pressure levels. Hap3 promoter-reporter construct showed lower promoter activity than the wild-type (Hap1) construct. In silico analysis and molecular dynamics studies predicted diminished binding of the transcription factor nuclear factor kappa B (NF-κB) to the functional -815T allele of Hap3 compared to the -815G wild-type allele; this prediction was validated by in-vitro experiments. Hap3 displayed impaired response to tumor necrosis factor-alpha treatment, possibly due to weaker binding of NF-κB. Notably, MMP8 promoter haplotypes were identified as independent predictors of plasma MMP8 and endothelial dysfunction markers (von Willebrand factor and endothelin-1) levels. CONCLUSION: MMP8 promoter GTTT haplotype has a functional role in reducing MMP8 expression during inflammation via diminished interaction with NF-κB and in enhancing the risk of hypertension.


Assuntos
Hipertensão , Metaloproteinase 8 da Matriz , Estudos de Casos e Controles , Células Endoteliais , Endotelina-1 , Predisposição Genética para Doença , Haplótipos , Humanos , Hipertensão/genética , Índia , Metaloproteinase 8 da Matriz/genética , NF-kappa B/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Fatores de Transcrição , Fator de Necrose Tumoral alfa , Fator de von Willebrand
9.
Comput Struct Biotechnol J ; 20: 3734-3754, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35891784

RESUMO

Protein seldom performs biological activities in isolation. Understanding the protein-protein interactions' physical rewiring in response to pathological conditions or pathogen infection can help advance our comprehension of disease etiology, progression, and pathogenesis, which allow us to explore the alternate route to control the regulation of key target interactions, timely and effectively. Nonalcoholic steatohepatitis (NASH) is now a global public health problem exacerbated due to the lack of appropriate treatments. The most advanced anti-NASH lead compound (selonsertib) is withdrawn, though it is able to inhibit its target Apoptosis signal-regulating kinase 1 (ASK1) completely, indicating the necessity to explore alternate routes rather than complete inhibition. Understanding the interaction fingerprints of endogenous regulators at the molecular level that underpin disease formation and progression may spur the rationale of designing therapeutic strategies. Based on our analysis and thorough literature survey of the various key regulators and PTMs, the current review emphasizes PPI-based drug discovery's relevance for NASH conditions. The lack of structural detail (interface sites) of ASK1 and its regulators makes it challenging to characterize the PPI interfaces. This review summarizes key regulators interaction fingerprinting of ASK1, which can be explored further to restore the homeostasis from its hyperactive states for therapeutics intervention against NASH.

10.
RSC Adv ; 12(7): 3809-3827, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35425455

RESUMO

Owing to its presence in several biological processes, Sirt1 acts as a potential therapeutic target for many diseases. Here, we report the structure-based designing and synthesis of two distinct series of novel Sirt1 inhibitors, benzimidazole mono-peptides and amino-acid derived 5-pyrazolyl methylidene rhodanine carboxylic acid. The compounds were evaluated for in vitro enzyme-based and cell-based Sirt1 inhibition assay, and cytotoxic-activity in both liver and breast cancer cells. The tryptophan conjugates i.e.13h (IC50 = 0.66 µM, ΔG bind = -1.1 kcal mol-1) and 7d (IC50 = 0.77 µM, ΔG bind = -4.4 kcal mol-1) demonstrated the maximum efficacy to inhibit Sirt1. The MD simulation unveiled that electrostatic complementarity at the substrate-binding-site through a novel motif "SLxVxP(V/F)A" could be a cause of increased Sirt1 inhibition by 13h and 13l over Sirt2 in cell-based assay, as compared to the control Ex527 and 7d. Finally, this study highlights novel molecules 7d and 13h, along with a new key hot-spot in Sirt1, which could be used as a starting lead to design more potent and selective sirtuin inhibitors as a potential anticancer molecule.

11.
J Med Chem ; 65(8): 5941-5953, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35420421

RESUMO

Monoclonal antibodies (mAbs) blocking the PD-1/PD-L1 interface have shown remarkable success in treating malignancies, but they may also initiate lethal immune-related adverse events. Small molecules may circumvent the mAb limitations; however, none has entered clinical trials targeting PD-1. Its complex protein-protein interaction interfaces necessitate an atomic-level understanding of recognition and binding mechanisms. Hence, we have aimed to highlight the PD-1's sequence-structure-dynamic-function link with its cognate ligands and diversely reported inhibitors. We focus primarily on the anti-PD-1 mAbs, their mode of actions, and interactions with PD-1 epitopes. The comparison of co-crystals showed that these ligands/inhibitors harness the PD-1's conformational plasticity and structural determinants differentially. The relationship between modulator binding patterns and biological activity is demonstrated using interaction fingerprinting of all reported human PD-1 co-crystals. The significant dynamical events and hot-spot residues underpinned from crystallographic wealth and computational studies have been highlighted to expedite small-molecule discovery.


Assuntos
Antineoplásicos Imunológicos , Receptor de Morte Celular Programada 1 , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/química , Antígeno B7-H1 , Humanos , Ligantes , Receptor de Morte Celular Programada 1/metabolismo , Ligação Proteica , Conformação Proteica
12.
J Biomol Struct Dyn ; 40(20): 10332-10344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34229568

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT) is a bottleneck enzyme that plays a key role in recycling nicotinamide to maintain the adequate NAD + level inside the cell. It involves maintaining the cellular bioenergetics and providing a necessary substrate for functions essential to rapidly proliferating the cancer cells. Therefore, inhibition of NAMPT appears as a therapeutic potential for cancer treatment. Here, the vast virtual screening followed by focused docking and in-vitro analysis was carried out to identify the promising hits of NAMPT. We have identified two potential hits from the filtered molecules, which are chemically diverse and have shown comparable quantitative values with reported co-crystal '1QS' as their binding pattern matched nicely. These two compounds are further explored through molecular dynamics simulations (MD) combined with pharmacokinetics profiling and thermodynamic analysis demonstrating their suitability as novel NAMPT inhibitors that can be used as starting points for a hit-to-lead campaign.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Nicotinamida Fosforribosiltransferase , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Niacinamida , Termodinâmica , Simulação de Acoplamento Molecular
13.
J Biomol Struct Dyn ; 40(20): 10162-10180, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34151735

RESUMO

For coronaviruses, RNA-dependent RNA polymerase (RdRp) is an essential enzyme that catalyses the replication from RNA template and therefore remains an attractive therapeutic target for anti-COVID drug discovery. In the present study, we performed a comprehensive in silico screening for 16,776 potential molecules from recently established drug libraries based on two important pharmacophores (3-amino-4-phenylbutan-2-ol and piperazine). Based on initial assessment, 4042 molecules were obtained suitable as drug candidates, which were following Lipinski's rule. Molecular docking implemented for the analysis of molecular interactions narrowed this number of compounds down to 19. Subsequent to screening filtering criteria and considering the critical parameters viz. docking score and MM-GBSA binding free energy, 1-(4-((2S,3S)-3-amino-2-hydroxy-4-phenylbutyl)piperazin-1-yl)-3-phenylurea (compound 1) was accomplished to score highest in comparison to the remaining 18 shortlisted drug candidates. Notably, compound 1 displayed higher docking score (-8.069 kcal/mol) and MM-GBSA binding free energy (-49.56 kcal/mol) than the control drug, remdesivir triphosphate, the active form of remdesivir as well as adenosine triphosphate. Furthermore, a molecular dynamics simulation was carried out (100 ns), which substantiated the candidacy of compound 1 as better inhibitor. Overall, our systematic in silico study predicts the potential of compound 1 to exhibit a more favourable specific activity than remdesivir triphosphate. Hence, we suggest compound 1 as a novel potential drug candidate, which should be considered for further exploration and validation of its potential against SARS-CoV-2 in wet lab experimental studies.Communicated by Ramasawamy H. Sarma.


Assuntos
Antivirais , RNA Polimerase Dependente de RNA , SARS-CoV-2 , Trifosfato de Adenosina , Antivirais/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , RNA Polimerase Dependente de RNA/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos
14.
J Biomol Struct Dyn ; 40(19): 9287-9305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34029506

RESUMO

The main protease, Mpro/3CLpro, plays an essential role in processing polyproteins translated from viral RNA to produce functional viral proteins and therefore serve as an attractive target for discovering COVID-19 therapeutics. The availability of both monomer and dimer crystal bound with a common ligand, '13b' (α-ketoamide inhibitor), opened up opportunities to understand the Mpro mechanism of action. A comparative analysis of both forms of Mpro was carried out to elucidate the binding site architectural differences in the presence and absence of '13b'. Molecular dynamics simulations suggest that the presence of '13b' enhances the stability of Mpro than the unbound APO form. The N- and C- terminals of both the protomers stabilize each other, and making it's interface essential for the active form of Mpro. In comparison to monomer, the relatively high affinity of '13b' is gained in dimer pocket due to the high stability of the pocket by the interaction of S1 residue of chain B with residues F140, E166 and H172 of chain A, which is absent in monomer. The comprehensive essential dynamics, protein structure network analysis and thermodynamic profiling highlight the hot-spots, pivotal in molecular recognition process at protein-ligand and protein-protein interaction levels, cross-validated through computational alanine scanning study. A comparative description of '13b' binding mechanism in both forms illustrates valuable insights into the inhibition mechanism and the selection of critical residues suitable for the structure-based approaches for the identification of more potent Mpro inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Simulação de Dinâmica Molecular , Humanos , Ligantes , Cisteína Endopeptidases/química , SARS-CoV-2/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Simulação de Acoplamento Molecular
15.
Drug Discov Today ; 27(2): 652-663, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34838728

RESUMO

ROR-γt, the master regulator of Th-17 cells, is activated by the binding of small molecules at its orthosteric site, followed by the recruitment of co-activators or co-repressors in the ligand binding domain (LBD). Th-17 cells provide immune-dependent protection against cancers and pathogens. Their dysregulation causes inflammation and is therefore implicated in various autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and psoriasis. Consequently, there is enormous interest in the development of ROR-γt modulators, both agonist and inverse-agonists. Here, we review advances in the development of ROR-γt modulators that have been made over the past decade, focusing on the rich crystallography landscape for ROR-γt co-crystals that has delineated the relationship between the binding patterns of modulators and the resulting biological activities.


Assuntos
Artrite Reumatoide , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Cristalografia , Humanos , Inflamação/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Células Th17/metabolismo
16.
Protein Sci ; 31(9): e4398, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36629250

RESUMO

The ability to predict the intricate mechanistic behavior of ligands and associated structural determinants during protein-ligand (un)binding is of great practical importance in drug discovery. Ubiquitin specific protease-7 (USP7) is a newly emerging attractive cancer therapeutic target with bound allosteric inhibitors. However, none of the inhibitors have reached clinical trials, allowing opportunities to examine every aspect of allosteric modulation. The crystallographic insights reveal that these inhibitors have common properties such as chemical scaffolds, binding site and interaction fingerprinting. However, they still possess a broader range of binding potencies, ranging from 22 nM to 1,300 nM. Hence, it becomes more critical to decipher the structural determinants guiding the enhanced binding potency of the inhibitors. In this regard, we elucidated the atomic-level insights from both interacting partners, that is, protein-ligand perspective, and established the structure-activity link between USP7 inhibitors by using classical and advanced molecular dynamics simulations combined with linear interaction energy and molecular mechanics-Poisson Boltzmann surface area. We revealed the inhibitor potency differences by examining the contributions of chemical moieties and USP7 residues, the involvement of water-mediated interactions, and the thermodynamic landscape alterations. Additionally, the dissociation profiles aided in the establishment of a correlation between experimental potencies and structural determinants. Our study demonstrates the critical role of blocking loop 1 in allosteric inhibition and enhanced binding affinity. Comprehensively, our findings provide a constructive expansion of experimental outcomes and show the basis for varying binding potency using in-silico approaches. We expect this atomistic approach to be useful for effective drug design.


Assuntos
Simulação de Dinâmica Molecular , Peptidase 7 Específica de Ubiquitina , Sítios de Ligação , Ligantes , Ligação Proteica , Domínios Proteicos , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores
17.
Int J Biol Macromol ; 193(Pt B): 1845-1858, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34762917

RESUMO

Microbial amino acid biosynthetic pathways are underexploited for the development of anti-bacterial agents. N-acetyl glutamate synthase (ArgA) catalyses the first committed step in L-arginine biosynthesis and is essential for M. tuberculosis growth. Here, we have purified and optimized assay conditions for the acetylation of l-glutamine by ArgA. Using the optimized conditions, high throughput screening was performed to identify ArgA inhibitors. We identified 2,5-Bis (2-chloro-4-guanidinophenyl) furan, a dicationic diaryl furan derivatives, as ArgA inhibitor, with a MIC99 values of 1.56 µM against M. tuberculosis. The diaryl furan derivative displayed bactericidal killing against both M. bovis BCG and M. tuberculosis. Inhibition of ArgA by the lead compound resulted in transcriptional reprogramming and accumulation of reactive oxygen species. The lead compound and its derivatives showed micromolar binding with ArgA as observed in surface plasmon resonance and tryptophan quenching experiments. Computational and dynamic analysis revealed that these scaffolds share similar binding site residues with L-arginine, however, with slight variations in their interaction pattern. Partial restoration of growth upon supplementation of liquid cultures with either L-arginine or N-acetyl cysteine suggests a multi-target killing mechanism for the lead compound. Taken together, we have identified small molecule inhibitors against ArgA enzyme from M. tuberculosis.


Assuntos
Aminoácido N-Acetiltransferase , Antituberculosos/química , Proteínas de Bactérias , Inibidores Enzimáticos/química , Mycobacterium tuberculosis/enzimologia , Aminoácido N-Acetiltransferase/antagonistas & inibidores , Aminoácido N-Acetiltransferase/química , Antituberculosos/uso terapêutico , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Inibidores Enzimáticos/uso terapêutico , Furanos , Mycobacterium bovis/enzimologia
18.
Arch Biochem Biophys ; 713: 109059, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34673001

RESUMO

Approved mAbs that block the protein-protein interaction (PPI) interface of the PD-1/PD-L1 immune checkpoint axis have led to significant improvements in cancer treatment. Despite having drawbacks of mAbs only few a compounds are reported till date against this axis. Inhibiting PPIs using small molecules has emerged as a significant therapeutic opportunity, demanding for the identification of drug-like molecules at an accelerated pace under the hit-to-lead campaigns. Due to the PD-L1's cross-talk with PD-1/CD80 and its overexpression on cancer cells, as well as the availability of its crystal structures with small molecules, it is an enticing therapeutic target for structure-assisted small molecule design. Furthermore, the selection of chemical databases enriched with focused designing for PPI interfaces is crucial. Therefore, in this study we have utilized the Asinex signature library for structure-assisted virtual screening to find the potential PD-L1 inhibitors by targeting the cryptic PD-L1 interface, followed by induced fit docking for pose refinements in the pocket. The obtained hits were then subjected to interaction fingerprinting and ligand-based drug-likeness investigations in order to evaluate and analyze their drug-like qualities (ADME). Twelve compounds qualified for molecular dynamics simulations, followed by thermodynamic calculations for evaluation of their stability and energetics inside the pocket. Two novel compounds with different chemical moieties have been identified that are consistent throughout the simulation, mimicking the interactions and binding energies with BMS-1166. These compounds appear as potential therapeutic candidates to be explored experimentally, thereby paving the way for the development of novel leads as immunomodulators.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Inibidores de Checkpoint Imunológico/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Sequência de Aminoácidos , Antígeno B7-H1/química , Sítios de Ligação , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Termodinâmica
19.
Chem Biol Interact ; 345: 109531, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34058178

RESUMO

Genotoxicity has been identified as the main cause of infertility and a variety of cancers. The mechanisms affect the structure, quality of the information or the segregation of DNA and are not inherently correlated with mutagenicity. The concept of genotoxicity, the chemical classes that cause genetic damage and the associated mechanisms of action are discussed here. Hazardous effects of pharmaceuticals, cosmetics, agrochemicals, industrial compounds, food additives, natural toxins and nanomaterials are, in large part, identified by genotoxicity and mutagenicity tests. These are critical and early steps in industrial and regulatory health assessment. Though several in vitro experiments are commonly used and approval by regulatory agencies for commercial licensing of drugs, their accuracy in human predictions for genotoxic and mutagenic effects is frequently questioned. Treatment of real and functional genetic toxicity problems depends in detail on the knowledge of mechanisms of DNA damage in the molecular, subcellular, cellular and tissue or organ system levels. Current strategies for risk assessment of human health need revisions to achieve robust and reliable results for optimizing their effectiveness. Additionally, computerized methods, neo-biomarkers leveraging '-omics' approaches, all of which can provide a convincing genotoxicity evaluation to reduce infertility and cancer risk.


Assuntos
Infertilidade/induzido quimicamente , Infertilidade/genética , Mutagênicos/toxicidade , Neoplasias/induzido quimicamente , Neoplasias/genética , Animais , Humanos , Medição de Risco
20.
J Mass Spectrom ; 56(2): e4694, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33410180

RESUMO

The progression of diabetic complications can be prevented by inhibition of aldose reductase and fidarestat considered to be highly potent. To date, metabolites of the fidarestat, toxicity, and efficacy are unknown. Therefore, the present study on characterization of hitherto unknown in vitro and in vivo metabolites of fidarestat using liquid chromatography-electrospray ionization tandem mass spectrometry (LC/ESI/MS/MS) is undertaken. In vitro and in vivo metabolites of fidarestat have been identified and characterized by using LC/ESI/MS/MS and accurate mass measurements. To identify in vivo metabolites, plasma, urine, and feces samples were collected after oral administration of fidarestat to Sprague-Dawley rats, whereas for in vitro metabolites, fidarestat was incubated in human S9 fraction, human liver microsomes, and rat liver microsomes. Furthermore, in silico toxicity and efficacy of the identified metabolites were evaluated. Eighteen metabolites have been identified. The main in vitro phase I metabolites of fidarestat are oxidative deamination, oxidative deamination and hydroxylation, reductive defluroniation, and trihydroxylation. Phase II metabolites are methylation, acetylation, glycosylation, cysteamination, and glucuronidation. Docking studies suggest that oxidative deaminated metabolite has better docking energy and conformation that keeps consensus with fidarestat whereas the rest of the metabolites do not give satisfactory results. Aldose reductase activity has been determined for oxidative deaminated metabolite (F-1), and it shows an IC50 value of 0.44 µM. The major metabolite, oxidative deaminated, did not show any cytotoxicity in H9C2, HEK, HEPG2, and Panc1 cell lines. However, in silico toxicity, the predication result showed toxicity in skin irritation and ocular irritancy SEV/MOD versus MLD/NON (v5.1) model for fidarestat and its all metabolites. In drug discovery and development research, it is distinctly the case that the potential for pharmacologically active metabolites must be considered. Thus, the active metabolites of fidarestat may have an advantage as drug candidates as many drugs were initially observed as metabolites.


Assuntos
Imidazolidinas/metabolismo , Imidazolidinas/farmacocinética , Aldeído Redutase/antagonistas & inibidores , Aldeído Redutase/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Humanos , Imidazolidinas/análise , Imidazolidinas/toxicidade , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA